Loading jsMath...
 

De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bepalen van een integraal

Ik zie door de bomen het bos niet meer bij het moeten bepalen van de volgende integraal

\int{}(x3+x)\sqrt{ }(x2+1)dx

Bouddo
Leerling mbo - dinsdag 31 januari 2012

Antwoord

Allereerst maar 's proberen om de zaak te vereenvoudigen:

\int {\left( {x^3 + x} \right)\sqrt {x^2 + 1} } \,dx = \int {x\left( {x^2 + 1} \right)\sqrt {x^2 + 1} } \,dx = \int {x\left( {x^2 + 1} \right)^{1\frac{1}{2}} } dx

Nu staat er toch weer iets als f(g(x))·g'(x). De primitieve zal iets worden als:

\left( {x^2 + 1} \right)^{2\frac{1}{2}}

Differentiëren geeft:

2\frac{1}{2}\left( {x^2 + 1} \right)^{1\frac{1}{2}} \cdot 2x = 5x \cdot \left( {x^2 + 1} \right)^{1\frac{1}{2}}

Dat is op een factor 5 na helemaal goed...

De primitieve is:

F(x) = \frac{1}{5}\left( {x^2 + 1} \right)^{2\frac{1}{2}} + C

Zeker weten? Bepaal de afgeleide maar!

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 31 januari 2012



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2025 WisFaq - versie 3

eXTReMe Tracker - Free Website Statistics