De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Stelling van Thales oppervlakte en omtrek

Beste,

Ik wil juist een bevestiging of de redenering klopt:
de stelling van thales:"trek een middellijn in een cirkel, elke driehoek die deze middellijn als basis heeft en waarvan ook het andere hoekpunt op de cirkel ligt is rechthoekig"

Dan is de grootste opp een driehoek waarvan de hoogte het grootst is. Je kan bij iedere middellijn twee droehoeken tekenen waarvan de opp het grootst is. Juist hé?

De omtrek van iedere willekeurige driehoek is (volgens de stelling met gelijke basis de middellijn)verschillend, omdat de hoogte verschillend is.

Kan u dit bevestigen? Want dat laatste is fout opgelost op mijn blad en ik wil weten of mijn redenering juist is.

Alvast bedankt!

Wiliam
3de graad ASO - zaterdag 9 juni 2007

Antwoord

Dag 'Wiliam',

Beide beweringen kloppen. Een driehoek (met middellijn als basis en derde hoekpunt op de cirkel met straal r) heeft maximale oppervlakte als hij gelijkbenig is (met opp=BH/2=2r·r/2=r2).

De omtrek is minimaal als je derde hoekpunt samenvalt met één van de twee andere hoekpunten. Dit geeft als omtrek 2r+2r=4r, alhoewel het strikt gesproken natuurlijk geen driehoek is. Het is een leuk extremumvraagstuk om te kijken wanneer de omtrek maximaal is, dit zal ook weer zijn in het gelijkbenige geval, waar de omtrek dan gelijk is aan
2r+rÖ2+rÖ2=2r(1+Ö2).

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 10 juni 2007



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3