De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Karakterisatie van symmetrische matrices

Karakterisatie van kwadratische vormen door het gebruik van determinanten

Veronderstel q(X1,X2,…,Xb) een kwadratische vorm met geassocieerde matrix A=(aij)

Dan geldt:
1.A ( of q) is positief definiet asa
|A1| 0; |A2| 0;…;|An| 0

2.A ( of q) is negatief definiet asa
|A1| 0; |A2| 0;…; (-1)^n |An| 0

Bewijs voor een reële 2*2-matrix:
. a b
A= b c

De geassocieerde kwadratische vorm q (x,y) wordt gegeven door

.q(x,y)= (x y ) a b (x)
. b c (y) = ax2 + 2bxy + cy2

We zoeken naar nodige en voldoende voorwaarden opdat q(x,y) positief ( resp. negatief) definiet zou zijn.

!a mag niet 0 zijn!!!

q(x,y) = 1/a (( ax + by)2 + ( ac – b2) y2)


1. We bewijzen nu:
a. Als a 0 en ac – b2 0, geldt duidelijk dat
q( x , y) 0
Voor alle elementen ( x , y) is niet gelijk aan ( 0 , 0)
Bovendien impliceert q (x, y )= 0 dat

1/a ( ax +by)2 = 0

(ac – b2) y2/a = 0 en dus y = 0, bijgevolg ook x=0 ( Waarom is dit?)


en q( x, y) is dus positief definiet.

b. Als q( x, y) positief definiet is,

.q(x,0) = ax20 voor alle elementen x is niet gelijk aan nul, bijgevolg moet a0
;q(-by/a , y) = (ac – b2)y/a 0 voor alle elementen y is niet gelijk aan 0

Bijgevolg moet ook ac – b2 0

Dit was het bewijs van positief definiet, onder dit bewijs staat dat het bewijs van negatief definiet analoog verloopt maar hoe kan men aantonen dat dit alternerend verloopt? Alsook in het bewijs zelf heb ik vermeld ' waarom is dit?' dat deel snap ik ook niet zo goed...

Kan er iemand mij hierbij helpen?
Alvast bedankt
Vriendelijke groetjes,
Natalie

natali
Student universiteit België - donderdag 9 juni 2005

Antwoord

Natalie,
Waarom is dit?Als (ac-b2)y2=0 en ac-b20 dan is y=0.Invullen in
(ax+by)2=0 geeft (ax)2=0 en omdat a0 is x=0.
Nu jouw vraag.Als q(x,y)0 voor alle (x,y)¹(0,0), dan is
f(x,y)= -q(x,y)0 voor alle (x,y)¹(0,0).
Dus f(x,y)=-1/a((ax+by)2+(ac-b2)y2)0 voor alle (x,y)¹(0,0)
als a0 en ac-b20.
Groetend,

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 10 juni 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3