De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Integraal met substitutie of niet...

Goede avond
Ik ben weer een tijd aan het zoeken naar een oplossing van 2 integralen:
I(1) van dx/{x($\sqrt{}$x2+x+1)}
Weet niet hoe beginnen... dx/x=ln(x) en dan
I(2) van (1+x)/(1+$\sqrt{}$x)
Ik gebruikte x=u2 maar geraak vast in berekeningen.
Wat op weg zetten is genoeg en dan kan ik wel verder, hoop ik. Goede nacht en alvast bedankt.

Rik Lemmens
Iets anders - donderdag 31 maart 2022

Antwoord

Eerst maar even de tweede:

Stel x=u2 is de juiste start. Dat levert (2u3+2u)/(u+1) du

Nu staartdeling uitvoeren levert 2u2 - 2u + 4 - 4/(u+1)
Dat primitiveren naar u en weer $\sqrt{}$ x terugzetten.

De eerste is nogal wat werk. Ik denk aan een goniometrische substitutie om die wortel kwijt te raken. Wat ik zou proberen is de $\sqrt{}$ (x2+x+1) te herschrijven in $\sqrt{}$ ((x+0,5)2+3/4) = $\sqrt{}$ ((x+0,5)2+a2)

Een dergelijke vorm vraagt om een substitutie van x+0,5 = a·tan(t) om die wortel weg te krijgen. Ik denk dat dat goed gaat maar de uitwerking is nog wel een heel gedoe.

Met vriendelijke groet
JaDeX

Ontvangen opmerking van KP voeg ik nog toe:

Aan het eind deed ik nog een u=tan(0,5t).
Dat zou in een keer kunnen, omdat tant=2u/(1−u2) via de optelformule, maar het is een gedoe.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 1 april 2022
 Re: Integraal met substitutie of niet 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2022 WisFaq - versie 3