De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Opgave uit boek

Hoi hoi!

Ik heb moeite met het begrijpen van een opgave + zijn "uitwerkingen". De vraag luidt:

Neem een set vectoren S = {v1 v2 v3, ... vn} in beschouwing die vectorruimte V opspant. Laat w een vector in V zijn maar niet in de set S. Bewijs dat {v1, v2, v3, ..., vn, w} ruimte V opspant maar lineair afhankelijk is.

Te bewijzen; {v1, v2, v3 .. vn, w} spant V op maar is lineair afhankelijk gegeven dat {v1, v2, v3, ... , vn} V opspant.

k1v1 + k2v2 + k3v3 + ... + knvn = w ofwel k1v1 + k2v2+ k3v3 + knvn - w is lineair afhankelijk want -(1) is een scalair getal. Maar... hoe bewijs ik nu dat {v1, v2, v3 ... vn, w) opspant?

In de uitwerkingen zeggen ze het volgende: Neem een vector u in beschouwing in V. Omdat gegeven is dat {v1, v2, v3, ... , vn} V opspant kunnen we schrijven dat u = k1v1 + k2v2 + k3v3 + knvn = k1v1 + k2v2+ k3v3 + knvn + (0)w. Conclusie {v1, v2, v3 .. vn, w} spant ook V op.

Ik begrijp hier helemaal niets van. Die (0) is 0 maar w dus dat is 0. Waarom spant zij dan mee de vectorruimte op? Er is een set vectoren die een vectorruimte V opspant. Als w niet in deze set zit, dan wordt hij geproduceerd door de set S {v1, v2, v3 ... vn}. Daarmee is de set niet meer lineair onafhankelijk. Als dat zo is... dan is w toch helemaal niet nodig in de set? Dat mag je het toch helemaal geen "span" noemen?

Ik zal de opgave per email sturen + de uitwerkingen. Het gaat dan om opgave 13. Ik kijk erg uit naar uw antwoord.

Vriendelijk groet,
Stijn

Stijn
Student hbo - vrijdag 23 juli 2021

Antwoord

Er wordt niet meer gedaan dan de definities letterlijk toe te passen.
"De verzameling $\{v_1,v_2,\ldots,v_n\}$ spant de ruimte $V$ op" betekent niets minder, maar ook niet meer dan: voor elke vector $v\in V$ zijn er getallen $k_1$, $k_2$, $\dots$, $k_n$ zo dat $v=k_1v_1+k_2v_2+\cdots+k_nv_n$.
Dan spant het stelsel $\{v_1,v_2,\ldots,v_n,w\}$ ook op: dat we iedere keer $0w$ nemen doet daar niets aan af: we kunnen voor elke $v\in V$ getallen $k_1$, $k_2$, $\dots$, $k_n$, $k_{n+1}$ vinden met $v=k_1v_1+k_2v_2+\cdots+k_nv_n+k_{n+1}w$.
Inderdaad, $w$ helpt eigenlijk niet mee maar de definitie zegt niet dat elke vector ook echt mee moet werken.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 24 juli 2021



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3