De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Vergelijking van twee ongelijkheden onder één functie

Beste

Ik zit vast bij onderstaande oefening. Ik begrijp niet hoe ik eraan kan beginnen. Ik begrijp niet dat k een waarde zou kunnen hebben waarbij de functie niet continu is. Als iemand mij hierbij zou kunnen helpen, zou ik heel dankbaar zijn.
Alvast bedankt
Het gaat als volgt:

f(x) is x2 als x$\le$2
f(x) is k - x2 als x $>$ 2
Vind de waarde van k zodat de functie continu is op $\mathbf{R}$

Duncan
3de graad ASO - zaterdag 26 september 2020

Antwoord

f(2)=4
Als je wil dat de functie continu is in 2, dan zal de rechterlimiet in 2 ook 4 moeten zijn.
$\displaystyle \lim_{{x\to 2}\atop{>}}(k-x^2)=4$. Dat wordt $k-4=4$ of $k=8$.

js2
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 26 september 2020
 Re: Vergelijking van twee ongelijkheden onder één functie 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb