De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Evenwijdigheid tussen een vector en de rechte r

Hallo,

Ik heb een vraag in verband met de evenwijdigheid tussen een gegeven rechte r (met parametervoorstelling) en een vector.

Wanneer kan je zien dat een vector evenwijdig is met een gegeven rechte. In onderstaande opgave geven ze zowel een x,y als z waarde waardoor je in 3D-ruimte werkt. Het enige wat ik online hierover heb gevonden is hoe je een vector tekent in 3D-ruimte, maar verder niks. Ik hoop dat iemand mij hierbij kan helpen.

Alvast bedankt.

Opgave
Beschouw de driedimensionale ruimte met een cartesiaans assenstelsel xyz en de rechte r met volgende
parametervoorstelling:
x=-2t
y=-2t+1
z=2t-1
(t is een element van |R)

Welk van onderstaande vectoren is evenwijdig met de rechte r?
(A) (0, 1, 1) (B) (0, 1, −1) (C) (1, 1, 1) (D) (1, 1, −1)

Duncan
3de graad ASO - vrijdag 28 augustus 2020

Antwoord

Je kunt de rechte $r$ ook schrijven als:

$
\left( {\matrix{
x \cr
y \cr
z \cr

} } \right) = \left( {\matrix{
0 \cr
1 \cr
{ - 1} \cr

} } \right) + t\left( {\matrix{
{ - 2} \cr
{ - 2} \cr
2 \cr

} } \right)
$

Of derhalve ook als:

$
\left( {\matrix{
x \cr
y \cr
z \cr

} } \right) = \left( {\matrix{
0 \cr
1 \cr
{ - 1} \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
1 \cr
{ - 1} \cr

} } \right)
$

...en eigenlijk ben je er dan al.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 28 augustus 2020
 Re: Evenwijdigheid tussen een vector en de rechte r 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb