De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Bewijzen van raakklijn aan cirkel met een gegeven vierkant

 Dit is een reactie op vraag 88380 
Volgens mij moet ik nog iets anders bewijzen. Stel het midden van PQ gelijk aan S. En stel dat de raaklijn door S gaat. En dan bewijzen dat de raaklijn loodrecht op AS staat.

Phybe
2de graad ASO - zondag 25 augustus 2019

Antwoord

Bij de lijn $PQ$ zijn er drie mogelijkheden: de lijn snijdt de cirkel niet, de lijn snijdt de cirkel in één punt of de lijn snijdt de cirkel in twee punten. In het geval er één snijpunt is heb je te maken met een raaklijn.

De coördinaten van $S$ kan je wel bedenken: $S(48,36)$. De richtingscoëfficiënt van de lijn door $AS$ is dan gelijk aan $\frac{3}{4}$ en inderdaad de lijn door $AS$ staat loodrecht op $PQ$.

Dat kan ook wel 's handig zijn, inderdaad, maar echt nodig was dat voor het bewijs niet.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 25 augustus 2019



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb