De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Re: Afknotten van een regelmatig twaalfvlak

 Dit is een reactie op vraag 39319 
maar dan kan je toch nooit achter de lengte van lijn x komen of ben ik nou gek...? want ik snap dat lijn BC=0.5-CX en dan heb je lijn x=1-Bc-DE alleen weet je lijn BC en lijn De niet dus dan kan het toch niet? Zou u alstublieft de berekening kunnen laten zien van hoe je lijn x zou kunnen uitdrukken?

erik
Leerling bovenbouw havo-vwo - woensdag 15 juni 2005

Antwoord

Over de eerste vraag zal ik maar geen uitspraak doen... Maar als ik voor driehoek ABC de cosinusregel opschrijf krijg ik zoiets als:

AC2 = AB2 + BC2 - 2·AB·BC·cos$\beta$

Als ik alles invul wat ik weet, dan krijg ik een vergelijking met één onbekende. AC was immers 'x' en AB en BC had ik uitgedrukt in 'x'. Ik ken de waarde van $\angle$B en de waarde van cosinus van $\angle$B. Volgens mij kan je die vergelijking dan oplossen... en dan weet je 'x'.

Er is ook niemand die zegt dat het makkelijk is... maar ja, dat is nu toch wel een beetje het idee van een PO...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 15 juni 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2025 WisFaq - versie 3