\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Hoe vind je de vergelijking van de raaklijn?

Hoe stel je een vergelijking op van de raaklijn aan de grafiek:
y=ľx4-1/3x3-x2+3
...in het punt A met xA=1?

Jos
Student hbo - woensdag 13 maart 2002

Antwoord

Hier zijn verschillende manieren. Eerst maar eens yA uitrekenen.

yA=1/4∑14-1/3∑13-12+3=111/12.

Vervolgens bereken je de afgeleide:
y'=x3-x2-2x

De afgeleide in A is dan:
f†'(1)=13-12-2∑1=-2
De richtingscoŽffiŽnt van de raaklijn in A is dus -2.
De raaklijn wordt dan y=-2∑x+b en gaat door A(1,111/12)

Invullen:
111/12=-2∑1+b
b=311/12.

De vergelijking van de raaklijn:
y=-2x+311/12

Maar dit kan natuurlijk ook: Het hangt er maar van af wat je makkelijker vindt. Het is beide goed.

Zie ook Berekenen van vergelijking raaklijn.
Wie is wie?
woensdag 13 maart 2002
©2004-2021 WisFaq