Levensduur lampen
Goedemorgen, Ik had een vraag over overige hypothese toetsen. Ik kom er niet helemaal mee uit om dit uit te leggen. De vraag is. Een fabrikant heeft de levensduur van twee type lampen onderzocht met als resultaat:
type 1: n = 110, 𝑋̅ = 1190 en s1 = 145, type 2: m = 120, 𝑌̅ = 1170 en s2 = 139.
a. Toets H0: μ1 = μ2 versus Ha: μ1 ≠ μ2 ( $\alpha $ = 10 %). b. Toets H0: σ1 = σ2 versus Ha: σ1 ≠ σ2 ( $\alpha $ = 5 %).
Ik hoop dat u mij kunt helpen.
Jade
Ouder - zondag 29 januari 2023
Antwoord
Dit worden twee tweezijdige toetsen.
Bij a een verschiltoets voor gemiddelden waarbij ik aanneem dat de werkelijke standaarddeviaties ongelijk zijn. De vrijheidsgraden worden gebaseerd op de kleinste steekproef dus n=110 geeft v=109 sd = $\sqrt{}$ (s12/n1 + s22/n2) = $\sqrt{}$ (1452/110 + 1392/120) = 18,766 Toetsingsgrootheid is nu d/sd = 20/18,766 = 1,066 Vergelijken met de grenswaarden uit de t verdeling +/-1,66 (109 vrijheidsgraden, $\alpha $ =10%). Dus H0 handhaven
Bij b een verschiltoets voor varianties. Uit te voeren met een F toets. Toetsingsgrootheid wordt f=s12/s22 = 1452/1392 = 1,088 De rechtergrens wordt F(vt;vn;0,975) = F(109;119;0,975) $\approx$ 1,64 Berekening linkergrens is niet relevant omdat de f $>$ 1 is. Ook hier H0 handhaven.
Met vriendelijke groet JaDeX
Zie t value berekenen
maandag 30 januari 2023
©2001-2024 WisFaq
|