\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Vulmachine

In een fabriek worden pakken met 1kg bloem gevuld. De vulmachine is afgesteld op een gemiddeld vulgewicht van 1002 g met een standaardafwijking van 4 g. De pakken worden op hun beurt verpakt met een plastic folie in pakketten van 10 pakken.
  1. Bereken het gemiddelde gewicht en de standaarddeviatie van deze pakketten als je weet dat de folie 5 gram weegt.
  2. Welke verwachtingswaarde en standaardafwijking geldt voor één willekeurig pak meel uit zo’n pakket?

Anisa
3de graad ASO - donderdag 18 juni 2020

Antwoord

Bij a. gaat het om de som van $n$ onafhankelijk stochasten. Er geldt:

q90133img1.gif

$
\eqalign{
& E\left( {X_1 ...X_{10} } \right) = 10 \cdot 1002g = 10.020g \cr
& \sigma \left( {X_1 ...X_{10} } \right) = \sqrt {10} \cdot 4g = 4\sqrt {10} g \cr}
$

Plus het gewicht van de folie, dus dan zal het 10.025 gram zijn...

Bij b. gaat het om het gemiddelde van $n$ onafhankelijk stochasten. Er geldt:

q90133img2.gif

$
\eqalign{
& E(X) = 1002g \cr
& \sigma (X) = {{4g} \over {\sqrt {10} }} = {2 \over 5}\sqrt {10} g \cr}
$

Dat zou het moeten zijn.

Zie Lesbrief normale verdeling


vrijdag 19 juni 2020

©2001-2024 WisFaq