\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Onbepaalde integraal bepalen met goniometrische functies

Geachte,

Ik ben een poging aan het doen volgende integraal aan het oplossen met een goniometrische functie

òdx/(x2·Ö(x2-4))

deze integraal is van de vorm:

òdx/(x2·Ö(x2-1))
en deze is oplosbaar via een eenvoudige substitutie
x = 1/cos(y) = sec (y) Þ dx = siny/cos2(y) dy

zodat Öx2-1 gelijk is aan sin y/cos y
de standaardintegraal gelijk is aan sin y + C zodat deze gelijk is aan Ö(x2-1)/x

desondanks vinden we onze eerste integraal niet via deze methode.

graag hulp, dank bij voorbaat

Iene

Iene R
Student universiteit België - dinsdag 9 november 2010

Antwoord

Hallo

Gebruik voor dergelijke integralen een driehoekje :

q63552img1.gif

cos(y) = 2/x
Dus x = 2/cos(y)

dx = 2.siny/cos2y.dy

tan(y) = Ö(x2-4)/2

dus Ö(x2-4) = 2.tan(y) = 2.sin(y)/cos(y)

En met dezelfde standaardintegraal bekom je dan :

Ö(x2-4)/4x

Ok?


dinsdag 9 november 2010

©2001-2024 WisFaq