\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Differienteren naar logaritme

 Dit is een reactie op vraag 58039 
Oke het begint een beetje te dagen...
Bij deze som mis ik een stap volgens het antwoord maar welke?
f(x) = (x+1)ln2(x)
f"(x) = 1ln2(x) + (x+1)2 1/x
Het boek zegt echter dat ik hierachter nog ln(x) moet zetten? waarom?

Welke stap doe ik nou verkeerd?
Alvast bedankt weer!

mariek
Cursist vavo - woensdag 21 januari 2009

Antwoord

Het probleem zit hem in de afgeleide van ln2(x).
ln2(x)=u2 met u=ln(x).
Nu is u'(x)=1/x, dus de afgeleide van u2=2uu'(x)=2ln(x)1/x


woensdag 21 januari 2009

©2001-2021 WisFaq