\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Vector ruimten

Beste,

Ik heb een vraagje over vector ruimten, het is eigenlijk een oefening. Zelf ben ik er niet ver mee geraakt.
De vraag luid als volgt:
De set van alle continue rëele functies gedefinieerd op het gesloten interval [a,b] in is beschreven door C[a,b]. Deze set is een deelruimte van de vectorruimte van alle rëele functies op [a,b]

a. Welk feit over continuë functies zou moeten bewezen worden om aan te tonen dat C[a,b] een deelruimte is. (dit wordt veronderstelt in de vraag)

b. Toon aan dat {f in C[a,b]:f(a)=f(b)} is een deelruimte van C[a,b].

Voor a. dacht ikzelf het volgende:
1. 0 element van C
2. a en b elementen van C dan a+b element van C
3. a element van C dan r.a element van C (met r een scalar)

Alvast bedankt
Bart

Bart H
Student Hoger Onderwijs België - zaterdag 31 mei 2008

Antwoord

Beste Bart,

Dat zijn inderdaad de juiste criteria, de laatste twee kan je samennemen als lineariteit.

De nulfunctie is continu, dus die zit al in C[a,b]. Verder weet je misschien (uit een cursus analyse?) dat een lineaire combinatie van continue functies, weer continu is.

Voor b: de nulfunctie voldoet alvast, want daar is f(a) = f(b) = 0. Neem vervolgens twee functies (f en g) die aan het gevraagde voldoen, ga na of een lineaire combinatie ook voldoet.

mvg,
Tom


zaterdag 31 mei 2008

©2001-2024 WisFaq