\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Som- en verschilformules

Hoi iedereen,

Ik moet aantonen dat als:
$\alpha$+$\beta$+$\gamma$=$\pi$ $\Rightarrow$
tan$\alpha$+tan$\beta$+tan$\gamma$=tan$\alpha$tan$\beta$tan$\gamma$.

Ik heb al vanalles geprobeerd. bv:

sin$\alpha$/cos$\alpha$+sin$\beta$/cos$\beta$
=(sin$\alpha$cos$\beta$+sin$\beta$cos$\alpha$)/(cos$\alpha$cos$\beta$)
=sin($\alpha$+$\beta$)/(cos$\alpha$cos$\beta$)
=sin($\pi$-$\gamma$)/(cos$\alpha$cos$\beta$)
=sin$\gamma$/(cos$\alpha$cos$\beta$)

Maar dan zit je nog met die laatste term sin$\gamma$/cos$\gamma$ die je erbij op moet tellen en daar loopt het vast?

Kan iemand een hintje geven?

Kevin
Beantwoorder - woensdag 9 januari 2008

Antwoord

Hallo

Je weet dat tan$\gamma$ = - tan($\alpha$+$\beta$)

Het linkerlid wordt:
sin$\alpha$/cos$\alpha$ + sin$\beta$/cos$\beta$ - sin($\alpha$+$\beta$)/cos($\alpha$+$\beta$)

Als je deze 3 breuken op gelijke noemer zet, wordt de teller :
(sin$\alpha$.cos$\beta$ + sin$\beta$.cos$\alpha$).cos($\alpha$+$\beta$) - sin($\alpha$+$\beta$).cos$\alpha$.cos$\beta$ =
sin($\alpha$+$\beta$).cos($\alpha$+$\beta$) - sin($\alpha$+$\beta$).cos$\alpha$.cos$\beta$ =
sin($\alpha$+$\beta$).(cos($\alpha$+$\beta$) - cos$\alpha$.cos$\beta$) =
-sin($\alpha$+$\beta$).sin$\alpha$.sin$\beta$

Hierin herken je zonder twijfel ook de teller van het rechterlid.

Hopelijk lukt het hiermee.


woensdag 9 januari 2008

©2001-2024 WisFaq