\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Geraak er niet aan uit

ik zou graag deze intgraal bereken, maar bekom steeds ander oplossingen kunnen jullie mij soms op weg helpen en zeggen welke de oplossing is.

hier komt mijn te berekenen integraal.

int(4x+1)*(e^(2x))dx

ik zou dit dan oplosson met substitutie:
stel t=2x dan is dt=2dx en dan is dx=dt/2

Þò (4x+1)*(e^t) dt/2
=1/2 ò (4x+1) *(e^t)
=1/2 (4x2/2 +x) *(e^t) +c
=1/2 (2x2+x) *(e^t) +c
=1/2 x(x+1) * e^(2x) +c

dit is 1 oplossing;
de andere oplossing is :

(2x-1/2)*e^(2x) +c

of nog een andere
1/2e^(2x)*(4x-1)+c

alvast bedankt

bart
Student Hoger Onderwijs België - zaterdag 27 mei 2006

Antwoord

Bart,
ò(4x+1)e^(2x)dx=1/2ò(4x+1)de^(2x)=1/2(4x+1)e^(2x)-1/2¥e^(2x)d(4x+1)
en de laatste integraal is gelijk aan 2òe^(2x)dx.
Nu jij weer.

kn
zaterdag 27 mei 2006

©2001-2024 WisFaq