\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Regel van Cramer

volgens mijn boek zou de regel van cramer als volgt verlopen:
stel A= 1 2 0
0 1 1
2 0 1
dan rekenen we erste de determinant uit: deze is dan 5

dan zeggen ze de matrix is dus inverteerbaar... we vinden:

M= 1 -2 -2 en Mtrans= 1 2 2
2 1 -4 -2 1 1
2 1 1 -2 -4 1

plussen en minnen verdelen volgens schaakbord geeft:

1 -2 2
2 1 -1
-2 4 1

delen door detA geeft inverse matrix= 1/5 (1 -2 2)
2 1 -1
-2 4 1

ik snap alleen totaal niet hoe ze aan de M komen... (dit staat ook niet uitgelgd of verklaard in de cursus... aangezien deze regel veel tijd bespaard zou het dus heel handig zijn moest ikweten hoe je aan deze M komt! alvast bedankt

WVDW
Student universiteit België - dinsdag 25 mei 2004

Antwoord

Die M is de matrix der minoren. Om bijvoorbeeld het element op de 2de rij, derde kolom te berekenen, schrap je in gedachten die 2de rij en die derde kolom. Er blijft over:


De determinant van deze 2 bij 2 is: -4.

En dus moet je als element (2,3) bij M invullen: -4.

Dat je op deze manier de inverse kan bepalen, heeft te maken met een gelijkheid die je waarschijnlijk wel gezien hebt, waarin de adjunctmatrix, de inverse en de determinant voorkomen.

Christophe
dinsdag 25 mei 2004

 Re: Regel van Cramer 

©2001-2024 WisFaq