\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Isomorf...

Ik had graag antwoord gehad op de volgende vraag:

Bewijs dat het veld van de complexe getallen ringisomorf is met de quotiŽntring [x] modulo het hoofdideaal voortgebracht door x2+1
(/[x2+1])
en ook ringisomorf is met de deelring
/a -b\
\b a / met a, b ő

van de matrixring Mat2().

Dank bij voorbaat voor het antwoord
(Ik werd misselijk van die vraag)

Koen
Student universiteit BelgiŽ - zondag 20 juli 2003

Antwoord

Mijn colleges algebra zijn van enige tijd geleden, maar wellicht heb je iets aan mijn ideeŽn.

Voor het eerste isomorfisme zou ik kijken naar de afbeelding
ģ[X ]/(X2+1)
a+b∑iģa+b∑X
en aantonen dat deze voldoet aan alle eigenschappen voor een isomorfe afbeelding.
Bedenk hierbij dat het wegdelen van het hoofdideaal (X2+1) wil zeggen dat X2+1 en 0 modulo hetzelfde zijn, ofwel X2 kan je vervangen door -1.

Op dezelfde manier zou ik voor het tweede isomorfisme kijken naar de afbeelding:
a+b∑iģ(ab-ba)


vrijdag 25 juli 2003

©2001-2021 WisFaq