Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Lineaire algebra

Beste,
Ik had een vraag over het gesloten Leontief-model. Het is immers een kenmerk dat de som van de elementen in het model gelijk is aan 1. Mogen we daaruit besluiten dat dit ook geldt voor de som van de elementen van elke rij? En is dit een 'voldoende voorwaarde' om te kunnen spreken over een gesloten Leontief-model? Alvast bedankt.

Studen
Student universiteit België - vrijdag 4 augustus 2023

Antwoord

Nee je kunt niet concluderen dat de rijsommen ook gelijk aan $1$ zijn:
$$\begin{pmatrix} \frac13 & \frac14\\ \frac23 & \frac34\end{pmatrix}
$$is een Leontief-matrix.

Naast de eis dat de getallen niet negatief zijn wil men in een Leontiefmodel ook dat de matrix $A$ zó is dat voor elke vector $x$ de coördinaten van $Ax$ en die van $x$ dezelfde som hebben; en dat gebeurt als alle kolomsommen gelijk aan $1$ zijn. Er zijn daarvoor geen eisen op de rijsommen nodig.

kphart
maandag 7 augustus 2023

©2001-2024 WisFaq