mijn antwoord is nog steeds niet juist. ik krijg nu 97,33 juiste antwoord is k=1.917 eigenlijk heb ik de vraag niet heel goed begrepen en daarom weet ik niet dat hoe ik het moet oplossen. Zal u aub mij verder helpen.
F.D
3de graad ASO - woensdag 26 mei 2021
Antwoord
Hallo,
Je had al gevonden dat je de oppervlakte A van de linker figuur berekent door de gegeven functie te integreren van x=-1 tot x=3:
Als je dit zonder rekenfouten uitwerkt (best lastig om dit foutloos te doen), dan vind je: A = 320/3 = 1062/3
In de vervolgvraag wordt gesteld dat er een verticale lijn moet zijn die de gekleurde oppervlakte in twee gelijke delen splitst, zie de rechter figuur. De vergelijking van deze lijn is x=k. In de figuur zie je al dat k iets kleiner zal zijn dan 2. De vraag is: wat is de waarde van k?
De aanpak is als volgt: De oppervlakte links van de lijn x=k moet de helft zijn van de oppervlakte A die hierboven is berekend, dus 1/2·320/3 = 160/3 = 531/3. Deze oppervlakte vind je door de gegeven functie te integreren tussen x=-1 en x=k. Dan geldt dus:
Zorgvuldig uitwerken levert:
Dit wordt:
Uiteindelijk levert dit deze vergelijking:
Het zal niet de bedoeling zijn om deze vergelijking algebraïsch op te lossen. Met een grafische rekenmachine vind je: k$\approx$1,917.