Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 90882 

Re: Differentiëren

Jaa maar nu lukt de 2e afgeleide mij niet. Ik ben geraakt tot een bepaald punt maar kan daar niet verder. Mijn uitkomst zou f''(x)=(2x2-1)/√(x2+1)5 moeten zijn.

Mel
Student universiteit België - donderdag 5 november 2020

Antwoord

Zei ik nu net dat zoiets handiger kan?

$
\eqalign{
& f(x) = \frac{1}
{{\sqrt {x^2 + 1} }} = \left( {x^2 + 1} \right)^{ - \frac{1}
{2}} \cr
& f'(x) = - \frac{1}
{2}\left( {x^2 + 1} \right)^{ - \frac{3}
{2}} \cdot 2x \cr
& f'(x) = - \frac{x}
{{\sqrt {\left( {x^2 + 1} \right)^3 } }} \cr}
$

Dat is beter werk!

Nu de tweede afgeleide:

$
\eqalign{
& f'(x) = - \frac{x}
{{\sqrt {\left( {x^2 + 1} \right)^3 } }} \cr
& f'(x) = - x\left( {x^2 + 1} \right)^{ - \frac{3}
{2}} \cr
& f''(x) = - 1 \cdot \left( {x^2 + 1} \right)^{ - \frac{3}
{2}} + - x \cdot - \frac{3}
{2}\left( {x^2 + 1} \right)^{ - \frac{5}
{2}} \cdot 2x \cr
& f''(x) = - \left( {x^2 + 1} \right)^{ - \frac{3}
{2}} + 3x^2 \left( {x^2 + 1} \right)^{ - \frac{5}
{2}} \cr
& f''(x) = - \frac{1}
{{\left( {x^2 + 1} \right)^{\frac{3}
{2}} }} + \frac{{3x^2 }}
{{\left( {x^2 + 1} \right)^{ - \frac{5}
{2}} }} \cr
& f''(x) = - \frac{{x^2 + 1}}
{{\left( {x^2 + 1} \right)^{\frac{5}
{2}} }} + \frac{{3x^2 }}
{{\left( {x^2 + 1} \right)^{ - \frac{5}
{2}} }} \cr
& f''(x) = \frac{{ - x^2 - 1 + 3x^2 }}
{{\left( {x^2 + 1} \right)^{ - \frac{5}
{2}} }} \cr
& f''(x) = \frac{{2x^2 - 1}}
{{\left( {x^2 + 1} \right)^{ - \frac{5}
{2}} }} \cr
& f''(x) = \frac{{2x^2 - 1}}
{{\sqrt {\left( {x^2 + 1} \right)^5 } }} \cr}
$

Is dat handig of is dat handig?

Naschrift

Echt handig is het niet, maar 't kan natuurlijk wel met de quotiëntregel. Je moet misschien zelf even kijken waar je precies de fout in gaat en waarom!

$
\eqalign{
& f'(x) = - \frac{x}
{{\sqrt {\left( {x^2 + 1} \right)^3 } }} = \frac{{ - x}}
{{\sqrt {\left( {x^2 + 1} \right)^3 } }} \cr
& f''(x) = \frac{{ - 1 \cdot \sqrt {\left( {x^2 + 1} \right)^3 } - - x \cdot \frac{1}
{{2\sqrt {\left( {x^2 + 1} \right)^3 } }} \cdot 3\left( {x^2 + 1} \right)^2 \cdot 2x}}
{{\left( {\sqrt {\left( {x^2 + 1} \right)^3 } } \right)^2 }} \cr
& f''(x) = \frac{{ - \sqrt {\left( {x^2 + 1} \right)^3 } + \frac{{3x^2 }}
{{\sqrt {\left( {x^2 + 1} \right)^3 } }} \cdot \left( {x^2 + 1} \right)^2 }}
{{\sqrt {\left( {x^2 + 1} \right)^6 } }} \cr
& f''(x) = \frac{{ - \left( {x^2 + 1} \right)^3 + 3x^2 \cdot \left( {x^2 + 1} \right)^2 }}
{{\sqrt {\left( {x^2 + 1} \right)^6 } \cdot \sqrt {\left( {x^2 + 1} \right)^3 } }} \cr
& f''(x) = \frac{{ - \left( {x^2 + 1} \right)^3 + 3x^2 \cdot \left( {x^2 + 1} \right)^2 }}
{{\sqrt {\left( {x^2 + 1} \right)^9 } }} \cr
& f''(x) = \frac{{ - x^2 - 1 + 3x^2 }}
{{\sqrt {\left( {x^2 + 1} \right)^5 } }} \cr
& f''(x) = \frac{{2x^2 - 1}}
{{\sqrt {\left( {x^2 + 1} \right)^5 } }} \cr}
$

Hoe moeilijk kan dat zijn?

WvR
donderdag 5 november 2020

©2001-2024 WisFaq