Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oplossen van een differentiaalvraagstuk

Beste,

Ik kreeg volgend probleem voorgeschoteld:

Een vat met inhoud 20 liter bevat lucht (80% N2, 20% 02). Men pompt 0, 1 liter stikstof per seconde in het vat, terwijl er een zelfde hoeveelheid mengsel uit het vat stroomt. Na hoeveel tijd bevat het vat 99% stikstof?

Ik heb DV al bepaald: ik denk dat deze voor stikstof en voor zuurstof gelijk is aan 3,80L. Echter zit ik in de knoop met de tijd, ik zie niet goed hoe ik een verband kan leggen, aangezien het volume steeds constant blijft.

Ik heb gezien dat er een gelijkaardige vraag is gepost, maar daarbij bleef het volume niet constant.

Zou u me kunnen helpen?

De Lan
Student universiteit België - woensdag 20 mei 2020

Antwoord

Ik begrijp je opmerking over de DV niet: hoe kan een differentiaalvergelijking gelijk zijn aan 3.8 liter?
Je kunt de tijd inbrengen door een balansvergelijking op te stellen:
$$\text{verandering}=\text{instroom}-\text{uitstroom}
$$Als je met $S(t)$ de hoeveelheid stikstof op tijdstip $t$ noteert is de linkerkant dus $S'(t)$; de instroom is $0{,}1$; de uitstroom is afhankelijk van de aanwezige hoeveelheid stikstof: er gaat $0{,}1$ liter uit en daar zit dan $1/200$ van de stikstof in. De uitstroom is dus $S(t)/200$.
Daar is je differentiaalvergelijking.

kphart
woensdag 20 mei 2020

©2001-2024 WisFaq