Gebeurtenissen A en B zijn onafhankelijk als P(A│B)=P(A│BC) Toon aan. Ik weet niet hoe ik dit zou moeten oplossen. Iemand die dit kan uitschrijven?
Gilles
Student universiteit België - zaterdag 28 december 2019
Antwoord
Beste Gilles,
Per definitie heb je: $$P(A \vert B) = \frac{P(A \cap B)}{P(B)} \quad\mbox{ en }\quad P(A \vert B^c) = \frac{P(A \cap B^c)}{P(B^c)}$$Gebruik nu $P(B^c)=1-P(B)$ en $P(A \cap B^c)=P(A)-P(A \cap B)$.
Verifieer nu dat beide enkel gelijk zijn indien $P(A \cap B) = P(A)P(B)$ en dus dat $A$ en $B$ onafhankelijk zijn.