Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 88816 

Re: Indicatorfunctie gegeven kansvariabele

Mijn excuses. Ik zal het beter formuleren. Stel X is een kansvariabele (kan continu of discreet zijn). Zij g : $\mathbf{R}$ $\to$ $\mathbf{R}$ gedefinieerd door g(u) = 1_(minus oneindig, x](u) voor een vaste x uit $\mathbf{R}$. Mijn vraag is nu, geldt er dat g(X) altijd een Bernoulli verdeelde kansvariabele is, met parameter P(X $\le$ x), ongeacht of X continu of discreet is? (met die 1_(minus oneindig, x](u) bedoel ik de indicatorfunctie die 1 geeft als het argument 'u' zich bevindt in het interval (minus oneindig, x] en 0 anders).

Joris
Student universiteit - zaterdag 14 december 2019

Antwoord

Dan krijgt je inderdaad een Bernoulli-verdeling met succeskans $p=P(X\le x)$.

kphart
zaterdag 14 december 2019

 Re: Re: Indicatorfunctie gegeven kansvariabele 

©2001-2024 WisFaq