Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Injectiviteit en surjectiviteit

Je hebt de functie g: R3$\to$ R3: (x,y,z) $\to$ (x2 + 2/3,z,x). De vraag is dan of g injectief en/of surjectief is. Nu dacht ik dat g zowel niet injectief als niet surjectief is vanwege de x2 in de eerste vector. Echter hoor ik nu geluiden dat vanwege de x in de derde vector dit toch wel het geval kan zijn?

Sjanni
Student universiteit België - zondag 31 mei 2015

Antwoord

Inderdaad, als de $x$-coordinaten van twee punten verschillen zijn de beelden ook verschillend (en dat geldt ook voor de $y$-coordinaten. Echter, reken $f(0,0,0)$ en $f(0,1,0)$ maar eens uit.

kphart
zondag 31 mei 2015

©2001-2025 WisFaq