Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

MacLaurin voor benadering

Gebruik een MacLaurinreeks van ln(1-x) om ln(1/2) te berekenen tot op 0.001 nauwkeurig. Een rekenmachine is niet toegestaan.

Dit heb ik:

Ln(1/2) = -ln2


MacLaurin:

f'(x) voor f(0) -- -0!
f''(x) voor f(0) -- -1!
f'''(x) voor f(0) -- -2!
.....
f^n(x) voor f(0) -- -(n-1)!

MacLaurinreeks wordt:

ln(1-x) = 0 - x - x2/2 - x3/3 - ... - x^n/n + Rn(x)
= Ln(1-x) = - Ś x^n/n

Waar loop ik vast: de restterm in zijn algemeenheid uitschrijven

Wat heb ik daarvan:

Rn(x) = [f^(n+1)(c)* x^(n+1)](n+1)!
Ik krijg hem echter niet uitgeschreven in dit geval omdat ik niet weet hoe je aangeeft dat voor de even machten er een minteken dient voor te staan, voor de oneven niet (continue alternerend dus).

Bovendien vraag ik me af hoe ik dan vanuit dit mijn waarde kies om een referentiewaarde te bepalen die ik op deze manier kan uitwerken:

"te bepalen waarde op basis van restterm Rn(x)" 10^-3

alvast bedankt voor jullie hulp (:

Sufjan
Student universiteit BelgiŽ - zondag 28 maart 2010

Antwoord

dag Sufjan,

In dit geval lijkt het me handiger om niet de omzetting
ln(1/2) = -ln(2) te gebruiken, maar voor x 'gewoon' de waarde 1/2 in te vullen in de reeks. Je hebt dan geen last meer van het alterneren, en je kunt de restterm eenvoudig afschatten.
groet,

Anneke
maandag 29 maart 2010

©2001-2024 WisFaq