Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Een bijzondere oplossing vinden

Ik heb volgende vgl : y'-(tanx)y = e5x
Ik heb al de algemene oplossing met rechterlid = O
dit is y = C · 1/cos(x)
Ik zoek nog de bijzondere oplossing.
Hier heb ik al y = Ae5x en y' = 5Ae5x
dus moet 5Ae5x-Atan(x)e5x= e5x ik zoek nu hoeveel A moet zijn en dit lukt niet.

liesbe
Student universiteit België - woensdag 28 januari 2009

Antwoord

Beste Liesbeth,

Het eenvoudige voorstel A.e5x werkt voor een differentiaalvergelijking met constante coëfficiënten, dat is hier door de factor tan(x) niet het geval. Je moet een algemenere methode gebruiken: variatie van de constante.

De homogene oplossing wordt gegeven door yh = C·sec(x), stel dan als particuliere oplossing voor: yp = C(x)·sec(x). Bepaal hieruit y'p, substitutie in de differentiaalvergelijking levert een vergelijking in C'(x).

mvg,
Tom

td
woensdag 28 januari 2009

©2001-2024 WisFaq