Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 57612 

Re: Integraal

Hallo,

als ik het goed begrijp kan je deze integraal dus niet zomaar oplossen?

Nu de integraal is eigenlijk een onderdeel van een differentiaalvergelijking: z2y'(z)+y(z)+3=0
En je zou het moeten kunnen oplossen met nulmakers, simpele eerste ordevergelijkingen waarbij je een homogene en partiele oplossing gaat zoeken.
Hoe los je dit probleem dan zo op?

Ik bereken eerst men homogene oplossing, dewelke C.e1/z is en dan zoek ik achter men particuliere oplossing waardoor ik op een gegeven monent dus de integraal van x-2·ex dx moet berekenen.

Jef
Student Hoger Onderwijs België - dinsdag 23 december 2008

Antwoord

Er zat een rekenfout in je uitwerking: duidelijk is dat y(z)=-3 een particuliere oplossing is (vul maar in). De homogene vergelijking wordt y'=-(1/x2)y en die heeft inderdaad y(z)=C*e1/z als oplossing. Als je een particuliere oplossing gaat zoeken zul je z-2e-1/z moeten primitiveren (en niet x-2*ez).

kphart
woensdag 24 december 2008

©2001-2024 WisFaq