To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
Loading jsMath...



Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Het maken van een totale differentiaal

Hallo,

Ik heb volgende opgave 2ydx = (4y(Öy)-x)dy
de vraag is: bepaal een f(y) zodat de dvg-vergelijking totaal wordt.

dwz. dat wanneer het deel voor dx en het deel voor dy partieel afgelijd worden naar respectivelijk y en naar x dat deze delen moeten gelijk zijn aan alkaar. Hiervoor moet de vgl wel eerst als een gelijkheid van 0 geschreven worden. dus ik los dit als volgd op:

de partieel afgeleide(PA) van (2y ´f(y))naar y = de PA (x-4^3/2)´f(y)

dus 2 f(y) + 2y (df(y)/dy) = f(y)
dus f(y) = -2y ( df(y)/dy)
dus f(y)/2y = df/dy
dus na integratie
-1/2 ln(y)= ln (f)
maar dat blijkt niet te kloppen, de oplossing blijkt de volgende te zijn ln (f)= -1/2 ln(y)^1/2 +Constante
en dus f= c/wortel(y)

kan er mij iemand helpen mijn fout op te sporen.

dries
Student Hoger Onderwijs België - vrijdag 30 mei 2008

Antwoord

f = -2y df/dy
(-1/2)dy/y = df/f
ln(f) = (-1/2)ln(y) + C
f = exp(C).exp((-1/2)ln(y))
f = k.y^(-1/2)

cl
zaterdag 31 mei 2008

©2001-2025 WisFaq