Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Laplace convolutie

Ik heb het volgende probleem met een deel van het bewijs van convolutie:

het gaat over een beginvoorwaardeprobleem waarin de oplossing zich opsplitst in 2 homogene en 1 particuliere oplossing.
Nu wordt er het volgende gezegd:

L{yp(t)}= F(s) / (as2+bs+c)
dit snap ik wel, maar het is de volgende stap die ik niet begrijp:

het vorige rechterlid = 1/a * (L{F(s)} * L{yh(t)})

ik begrijp het invullen van de waarden wel, maar ik zie niet in hoe je een laplace kan nemen van F(s), laplace beeldt namelijk t-waarden uit in functie van s.

Daarom dacht ik dat die L{F(s)} eigenlijk de inverse laplace moet zijn!

kan dit kloppen?

Alvast bedankt

Mattis
Student Hoger Onderwijs België - zaterdag 19 januari 2008

Antwoord

Beste Mattis,

Er komt maar geen reactie op je vraag. En ik zie ook niet waar je heen wilt. Misshien kun je wat meer vertellen over het probleem waar je aan werkt?

Ik zie nauwelijks verband tussen de twee vergelijkingen. Een product van laplace getansformeerden duidt meestal op een convolutie in de oorspronkelijke ruimte. Maar, dat zie ik nergens. Verder gebruik je nog yp(t) en yh(t). Misschien zit daar verschil. Maar het kan ook gewoon een typfout zijn?

Ik hoop dat je wat meer kunt vertellen en dat je je dan kunnen helpen.
Groet. Oscar

os
zondag 27 januari 2008

©2001-2024 WisFaq