Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oppervlakte berekenen

Hallo,

Ik had een vraagje over het berekenen van een oppervlakte:

De oppervlakte van de kleinste vlakke figuur die begrensd wordt door de parabool: y2= 4x, de rechte y= 2x-4 en de x-as bedraagt:

A: 3 B 5/2 C: 7/3 D:4Ö2/3

Ik ben begonnen met de snijpunten te zoeken van de parabool en de rechte. Met behulp van discriminant kom ik uit op -2 en 4. Ik veronderstel dat het gedeelte daartussen de oppervlakte is.

Dus dan bekom ik:
opp= òy2/4 - y/2-2 met als bovengrens 4 en ondergrens -2)
Om dan verder op te lossen met integratie door splitsing.
Is deze methode juist of zie ik toch ergens iets boven het hoofd. Want ik kom na uitwerking geen enkele van de meerkeuze oplossingen uit:P

Bedankt!

Nick
3de graad ASO - zondag 1 juli 2007

Antwoord

y2=4x
y=2x-4

(2x-4)2=4x
4x2-16x+16=4x
4x2-20x+16=0
x2-5x+4=0
(x-1)(x-4)
x=1 of x=4

Snijpunten (1,-2) en (4,4)

q51560img1.gif

Oppervlakte onder parabool/rechte

WvR
zondag 1 juli 2007

©2001-2024 WisFaq