Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 51032 

Re: Homogene differentiaalvergelijking

Ja inderdaad, dat heb ik gedaan, en dan krijg je:

y[hom.](t) = exp (-2)*sinx

maar de oplossing zegt:

y[hom.](t) = 1/sin2(x)

en als je dat verder uitwerkt, klopt de gehele differentiaalvergelijking wel, maar het kan toch niet dat de integraal van cotx de afgeleide van cotx oplevert, wat hier dus het geval is???

ik weet het, beetje rare vragen, maar ik zit er wel mee:)

M
Student Hoger Onderwijs België - zaterdag 2 juni 2007

Antwoord

Dan zou ik nog maar eens kijken hoe de e-macht en de logaritmen werken: -2ln(sin(x))=ln(1/sin2(x)); de e-macht daarvan is 1/sin2(x)

kphart
zondag 3 juni 2007

©2001-2024 WisFaq