Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 50547 

Re: Diagonaalmatrix

Het is nu net die matrix P die ik niet kan vinden. P is toch de overgangsmatrix van de nieuwe gevonden basis van eigenvectoren naar de vorige basis die ik niet ken.

Je moet toch zoiets kunnen schrijven als:

(1,1)= x (?,?) + y (?,?)
(-2,1)= z (?,?) + w (?,?)

waaruit volgt dat P = (x z)
(y w)

In feite kan je ook de transformatie toepassen op deze eigenvectoren en hieruit dan de diagonaalmatrix halen? Maar ik veronderstel dat dit niet kan aangezien je de afbeelding niet kan achterhalen van deze vectoren.


Extra: In verband met jou opmerking van de eigenvector (-2,1) wat inderdaad correct is, kan je ook (2,-1) schrijven?

Pieter
Student Hoger Onderwijs België - dinsdag 1 mei 2007

Antwoord

Beste Pieter,

Een eigenvector is slechts bepaald op een constante factor (niet 0) na, dus ook (2,-1) is prima. Als geen andere basis gegeven is, gewoon ten opzichte van de standaardbasis, waarom zou je het moeilijker maken? In de kolommen van P staan dan gewoon de eigenvectoren. Dat levert:

q50549img1.gif

mvg,
Tom

td
dinsdag 1 mei 2007

 Re: Re: Diagonaalmatrix 

©2001-2024 WisFaq