Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

particuliere oplossing van een lineaire dv

hier de functie: x.dy/dx + y = 2.ln(x)

hoe los ik deze vraag op door middel van Variatie van constanten? :)

Gr. Bob

Bob
Student hbo - zondag 24 september 2006

Antwoord

Beste Bob,

Dit is een lineaire dv van eerste orde: de homogene oplossing kan je vinden door scheiden van veranderlijken. Om een particuliere oplossing te vinden kan je de methode van "variatie van de constante" toepassen. De homogene oplossing is van de vorm yh = c.f(x), stel als particuliere oplossing hetzelfde voor maar laat c afhangen van x: yp = c(x).f(x).

Ik stel de oorspronkelijek dv algemeen voor als a(x)y' + b(x)y = d(x). Substitutie van yp in de oorspronkelijke dv levert, rekening houdend met de homogene oplossing, a(x)c'(x)f(x) = d(x) hetgeen in het algemeen het volgende geeft voor c(x):

c(x) = ò d(x)/(a(x)f(x)) dx

Merk op dat ik nog niets specifiek van jouw opgave heb gebruikt, bovenstaand resultaat is dus algemeen en in het vervolg direct bruikbaar. Nu is in jouw geval a(x) = x, d(x) = 2.ln(x) en f(x) = 1/x, dit laatste vind je door yh te bepalen. De noemer valt netjes weg zodat c(x) gegeven wordt door de primitieve van 2.ln(x).

mvg,
Tom

td
zondag 24 september 2006

©2001-2024 WisFaq