Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Ax+By+C=0

Hallo,
de cartesische vergelijking van een rechte zou moeten zijn A.x+B.y+C=0, maar ik begrijp niet goed waar dit van komt? en wat betekent die A, B, C ?

HOe vorm je (x-xo)/ a) = (y-yo)/b = (z-zo)/c om naar die vorm?

Rep
Student Hoger Onderwijs België - donderdag 7 september 2006

Antwoord

Beste Rep,

Je geeft eerst de cartesische vergelijking van een rechte in het vlak, namelijk ax+by+c=0 met hierin a,b,c constanten. Deze kan je afleiden uit de vectorvergelijking door deze uit te schrijven in componenten (parametervergelijking) en de parameter te elimineren.

De tweede uitdrukking is het voorschrift van een rechte in de ruimte, vandaar ook de z-coördinaat. Je ziet hier twee gelijkheden, het is dan ook een stelsel vergelijking in cartesische vorm. Laat het laatste lid weg, en het is ook een vergelijking voor een rechte in het vlak.

mvg,
Tom

td
donderdag 7 september 2006

©2001-2024 WisFaq