Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 42938 

Re: Matrixvoorstelling

alvast bedankt voor de reactie, maar de beelden van de basisvectoren... wil dat zeggen dat bij x3,x2,x,1 :

a=1, b=1, c=1, d=1? want dan krijg je tog (0,0,0).. of hoe moet ik dat dan doen?

alvast bedankt

Tom
Student universiteit België - zaterdag 14 januari 2006

Antwoord

Beste Tom,

Er zijn vier basisvectoren, je moet dit voor elke basisvector apart doen.
Voor x3 bijvoorbeeld is a = 1 en de rest gelijk aan 0, dus:
f(x3) = (0-0,1+0-2*0,1-0) = (0,1,1)

Dat is het beeld van de eerste basisvector, zo bepaal je ook de beelden van de drie andere basisvectoren. Maar deze beelden staan nu nog ten opzichte van de standaardbasis van 3 en we willen ze ten opzicht van de gegeven basis. Daarom moet je elk van deze beelden dan nog gaan schrijven als een lineaire combinatie van de gegeven basisvectoren, dus:

(0,1,1) = x(1,1,1) + y(1,1,0) + z(1,0,0)

Los dat op naar x,y en z. Dat zijn dan de coördinaten van de beelden van de basisvectoren (van de bronruimte) ten opzichte van de opgegeven basis (van de beeldruimte), en dat is precies wat er in de kolommen van de matrix komt. In de eerste kolom die van de eerste basisvector (die ik als voorbeeld gedeeltelijk heb gedaan) en in de volgende kolommen die van de volgende basisvectoren.

mvg,
Tom

td
zaterdag 14 januari 2006

©2001-2024 WisFaq