Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Inproduct met Grammatrix

hallo
uit mijn cursus:

een basis B={e1,...,en} voor vectorruimte V
g: VxV®K een inproduct op V
de Grammatrix G=(g(ei,ej)),i,j=1,...,n

we zien nu dat de Grammatrix het inproduct volledig bepaalt, namelijk
g(v,w)=g(åi xiei,yiei)
i,j=1n xiyjg(ei,ej)
=vt.G.w

- in de eerste stap vervangen we v en w door hun voorstelling als lineaire combinatie van de basisvectoren
- de tweede stap echter begrijp ik niet (vanwaar bv komt de j plots?)

kan iemand helpen?
met vriendelijk groeten
Tom

Tom
Student universiteit België - dinsdag 9 augustus 2005

Antwoord

Het helpt misschien als je het uitschrijft voor, zeg, het geval n=2 (of n=3).
Schrijf v=x1e1+x2e2 en w=y1e1+y2e2. Als je g(v,w) vervolgens uitwerkt krijg je vier termen: x1y1g(e1,e1)+x1y2g(e1,e2)+x2y1g(e2,e1)+x2y2g(e2,e2)
Hiervoor heb je twee sommatie-indices nodig: de i voor de x-en en de j voor de y-en.

kphart
dinsdag 9 augustus 2005

©2001-2025 WisFaq