Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Priemgetallen en Pythagoras

Gegeven een oneven priemgetal p , waarom is het zo dat er precies één Pythagorasdriehoek (geheeltallige zijden, rechhoekige driehoek) is met p als lengte van een rechthoekszijde?

Floor
Beantwoorder - maandag 30 mei 2005

Antwoord

De verschilrij van de kwadraten bestaat uit alle oneven getallen. Daarvan is p2 er een, dus p2 is het verschil van twee opeenvolgende kwadraten, en daarmee is p de lengte van een rechthoekszijde van een rechthoekige driehoek.

Stel dat p2 = m2 - n2 voor twee niet opeenvolgende getallen. Dan is p2=(m-n)(m+n). Omdat m-n 1, vinden we twee verschillende niet-triviale factoren van p2, en dat is in tegenspraak met het priem zijn van p. Er is dus geen tweede Pythagorasdriehoek met p als lengte van een rechthoekszijde.

FvL
maandag 30 mei 2005

Re: Priemgetallen en Pythagoras

©2001-2024 WisFaq