Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Drievoudige integraal

Altijd weer heb ik problemen met het opstellen van een drievoudige integraal en met name het vinden van de bijbehorende grenzen. In het bijzonder zit ik momenteel vast bij het volgende probleem;

Bereken de drievoudige integraal over het gebied G van dxdydz / (x2+y2+z2)^1/2 , waarbij G het ringvormig gebied begrensd door de oppervlakken met vergelijking y2+z2=2x+1 , y2+z2=4x+4 , y2+z2=-2x+1 en y2+z2=-4x+4.

Ik ben al overgegaan op poolcoordinaten, maar kom niet tot een oplossing...
Zijn er misschien (online) uitgewerkte voorbeelden van dit soort vraagstukken beschikbaar ?

Dank bij voorbaat !

Sven W
Student universiteit België - maandag 5 januari 2004

Antwoord

Hallo Sven,
Ik wil je een beetje op weg helpen. Eerst eens goed kijken. In de beschrijving van het gebied G , en ook in de te integreren functie komen alleen de grootheden x en y^2 + z^2 voor. Het ligt dus voor de hand om zg cylindercoördinaten in te voeren. r = ?(y^2 + z^2) en x. Het gebied G is een omwentelingslichaam rond de x-as.
De oppervlakken die G begrenzen zijn van de vorm r = f(x).
We krijgen dan een dubbele itegraal van 2Pi r dr van de functie 1/ ?(r^2 + x^2).
Deze kan met herhaald integreren worden berekend. Eerst bij vaste x over r van 0 tot f(x). en daarna over x. Uit je beschrijving is niet duidelijk welk gebied precies bedoeld wordt. De 4 oppervlakken verdelen de ruimte in verschillende stukken. Je zult er zelf wel weten welk stuk je moet hebben.
Succes ermee.

JCS
dinsdag 13 januari 2004

©2001-2024 WisFaq