De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Collineaire punten

in een parallellogram abcd is e een punt van ab en f een punt van cd. De rechten bf en ce snijden elkaar in p, de rechten af en de snijden elkaar in q. Bewijs dat het snijpunt van de diagonalen van abcd op de rechte pq ligt.

Valera
3de graad ASO - woensdag 16 april 2003

Antwoord

Nogmaals hallo, Valera,

Ik denk dat je deze best oplost met co÷rdinaten: noem d(0,0), c(c,0), a(a1,a2), b(c+a1,a2). Dan heeft e co÷rdinaten (e,a2) en f(f,0). Je kan dan de vergelijking van af opstellen (ja, je kan dat :-)), dat geeft y(a1-f) = (x-f)a2. En voor de: y = a2 x/e. Dat geeft je de co÷rdinaten van q (stelseltje oplossen). Hetzelfde doe je voor ce en bf om p te bekomen, en voor ac en bd om het snijpunt m van de diagonalen te krijgen. Om te controleren of die collineair zijn kan je dan de vergelijking van de rechte pq opstellen, en controleren of de co÷rdinaten van m aan die vergelijking voldoen. Tzal wel wat werk zijn, maar ik zie niet direct een meetkundig bewijs dat makkelijker zou zijn.

Succes!

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 16 april 2003



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3