De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Limiet van meerdere veranderlijken

Ik moet lim(x,y) $\to$ (0.01;1.05) sin( $\pi$ xy + ln y) benaderen, maar heb geen idee hoe daar aan te beginnen. Er wordt gevraagd om linearisatie rond een geschikt punt te gebruiken. Weet iemand hoe ik hier mee op weg moet?

Jacob
Student universiteit België - maandag 18 december 2023

Antwoord

De limiet kun je uitrekenen door in te vullen; ik vermoed dat je de functiewaarde van $f(x,y)=\sin(\pi xy+\ln y)$ in het punt $(0{,}01, 1{,}05)$ moet benaderen.

De functiewaarde in het dichtbije punt $(0,1)$ is makkelijk te bepalen: $\sin(\pi\cdot0\cdot1+\ln 1)=\sin 0=0$. De linearisering $L(x,y)$ rond $(0,1)$ maak je door de partiële afgeleiden, $f_x$ en $f_y$, van $f$ in $(0,1)$ uit te rekenen en dan
$$L(x,y)=f(0,1)+f_x(0,1)\cdot(x-0)+f_y(0,1)\cdot(y-1)
$$te zetten (dit staat allemaal in je boek als het goed is).

Het gevraagde antwoord is dan $L(0{,}01,1{,}05)$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 19 december 2023



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3