De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Kwadratische congruentie

Beste

Ik weet niet zo goed hoe ik aan de volgende vraag kan beginnen: Beschouw (Z/pZ,+,.) met p priem. Bewijs dat er (p2+p)/2 kwadratische vergelijkingen X2+aX+b=0, met a,b element van Z/pZ, bestaan die 2 (mogelijks samenvallende) oplossingen hebben in Z/pZ.

In mijn notities heb ik over kwadratische congruenties enkel het criterium van Euler en x2=a(mod p) heeft juist 2 of geen oplossingen bewezen, en ik kan niet direct een link zetten met mijn vraag die ik nu moet bewijzen.

Kunt u mij aub op de goede weg zetten. Alvast dank ik u bij voorbaat.

Met vriendelijke groeten
Rafik

Rafik
Student universiteit BelgiŽ - zaterdag 21 november 2020

Antwoord

Dit is een eenvoudig telprobleem dat niets met diepe stellingen over congruenties te maken heeft.

Elke oplosbare kwadratische vergelijking is te ontbinden tot $(X-i)(X-j)=0$ met $i,j\in\mathbb{Z}/p\mathbb{Z}$.

Omdat $i$ en $j$ ook gelijk mogen zijn heb je $\frac12(p^2+p)$ van dergelijke paren en dus net zoveel oplosbare vergelijkingen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 21 november 2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3