De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Dynamische modellen en matrices

In een stad breekt een bepaalde ziekte uit. Van de 10 000 inwoners raken er 500 besmet. Wanneer je geneest van de ziekte raak je immuun en kan je niet meer ziek worden. Op het moment van uitbreken is niemand immuun. Gegeven is dat 20% van de zieken een gezonde persoon besmet en 30% van de zieke mensen geneest en immuun raakt.
  • Iemand die mij kan helpen dit in een matrix te gieten?

lander
Student universiteit BelgiŽ - maandag 14 januari 2019

Antwoord

Hallo Lander,

Onduidelijk is wat er gebeurt met de 70% zieke mensen die niet geneest: blijven deze ziek, of overlijden deze? Ik ga er even van uit dat deze mensen ziek blijven (en dan in een latere fase dezelfde kans hebben als 'nieuwe' zieken om alsnog te genezen). In dat geval zijn er vier categoriŽn mensen:
  • N: niet besmet
  • B: besmet
  • Z: ziek
  • I: immuun
Je overgangsmatrix wordt dan 4x4 (als niet-genezende zieken zouden overlijden, dan moet je hiervoor een 5e categorie toevoegen).

Bedenk dan hoe in een nieuwe fase het aantal mensen in een categorie bepaald wordt door de aantallen in de vorige fase. Als voorbeeld laat ik zien hoe dit gaat voor de categorie Z:

Schrijf Znieuwe fase= a∑N + b∑B + c∑Z + d.I
waarbij A, B, Z en I de aantallen zijn in de voorgaande fase.

Voor Z wordt dit:
Z = 0∑N + 1∑B + 0,7∑Z + 0∑I

De derde rij in je overgangsmatrix heeft dan de elementen:
0 1 0,7 0

Doe dit ook voor de drie overige categorieŽn en je matrix is klaar.

Omdat je alle categoriŽn hebt benoemd, en het aantal mensen constant blijft, moet de som van de elementen in elke kolom gelijk zijn aan 1. Immers, elke persoon uit een categorie moet in een volgende fase weer in ťťn van de categorieŽn voorkomen. Check dit dus, als een som niet gelijk is aan 1, dan zit er zeker nog een fout in je matrix.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 14 januari 2019



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3