De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Totale afleidbaarheid bewijzen

Hallo, mijn vraag gaat als volgt: er is gegeven dat f een functie is van Rn naar Rk die voldoet aan ||f(x)|| $\le$ ||x||2 voor alle x in Rn. Ik moet nu aantonen dat f totaal afleidbaar is in 0 en (df)(0) bepalen.

Nu, ik weet dat f totaal afleidbaar is in een x0 in Rn als er een lineaire afbeelding (df)(x0) bestaat zodat f(x) = f(x0) + (df)(x0)(x-x0) + o(||x-x0|| voor x$\to$ x0. Maar ik weet niet hoe ik nu verder moet. Kan iemand me helpen?

Alvast bedankt!

Stijn
Student universiteit BelgiŽ - zondag 7 oktober 2018

Antwoord

Uit de aannamen volgt dat $f(0)=0$ en dat $f(x)$ zelf $o\bigl(\|x\|\bigr)$ is. Nu zou ik voor $\mathrm{d}f(0)$ de nulafbeelding nemen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 7 oktober 2018



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3