De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Eerste graad DV eenvoudig?

Dag Wisfaq,
Ik heb nu de volgende DV:
√(x)(dy/dx)=e^(y+√(x)
Ik loste deze op als volgt:
dy/dx=((e^√(y).(e^WORTEL](x))/(√(x)
dy/(e^(y))= ((e^WORTEL](x)^)dx/(√x))
ln(ey)= INT(ex)dx)/(√(x)
y= (2)INT(e^√(x)d(√(x)
y= 2e^√(x)+C
Randvoorwaarden zijn: y(0)=0 en x$>$0
En:
0=2e0+c en c=-2
Oplossing: 2e
y=2e^√(x)-2
Wat is er aan deze oplossing verkeerd als ik in het antwoord lees::
y= -ln(3-2ex)waar de randvoorwaarden dan al in verwerkt zijn.
Ik hoop dat ik Wisfaq niet te veel met mijn vragen bestook.
Maar ik reik hier een oplossing aan die blijkbaar niet juist is.
Vriendelijke groeten,
Rik

Rik Le
Iets anders - zondag 9 september 2018

Antwoord

Beste Rik,

Bij het integreren van het linkerlid gaat het mis, dat geeft niet ln(ey) maar:
$$\int\frac{1}{e^y}\,\mbox{d}y=\int e^{-y}\,\mbox{d}y=-e^{-y}$$zodat:
$$-e^{-y}=2e^{\sqrt{x}}-c \iff e^{-y}=c-2e^{\sqrt{x}}\iff y=-\ln\left(c-2e^{\sqrt{x}}\right)$$en $c$ volgt met de beginvoorwaarde.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 9 september 2018



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3