De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Breuken vereenvoudigen

Hallo,

Ik heb een vraag over bijgevoegde som. De eerste twee stappen zijn mij helder, maar de stappen die daarna komen snap ik niet zo goed. Welke wetmatigheid wordt toegepast om van 2 naar 3 te komen? De "[ ]" ken ik bijvoorbeeld alleen van differentieren en heb ik niet eerder gezien bij algebra.

Hopelijk kunnen jullie me een beetje op weg helpen.

Aleta
Student universiteit - donderdag 6 september 2018

Antwoord

Die rechte haken '[' en ']' zijn hetzelfde als de normale haakjes, je had daar ook $2(2)((-1)(x-1))(2+x)$ kunnen schrijven, maar misschien heeft men gedacht dat de rechte haken duidelijker zijn. Voor de rest is het wel een beetje soppig...

Ik zou dat zo doen:

$
\eqalign{
& \frac{{2x^2 + 6x - 8}}
{{8 - 4x - 4x^2 }} = \cr
& \frac{{x^2 + 3x - 4}}
{{4 - 2x - 2x^2 }} = \cr
& \frac{{x^2 + 3x - 4}}
{{ - 2( - 2 + x + x^2 )}} = \cr
& \frac{{x^2 + 3x - 4}}
{{ - 2(x^2 + x - 2)}} = \cr
& \frac{{(x - 1)(x + 4)}}
{{ - 2(x + 2)(x - 1)}} = \cr
& \frac{{x + 4}}
{{ - 2(x + 2)}} = \cr
& - \frac{{x + 4}}
{{2(x + 2)}} \cr}
$

Bij jouw uitwerking moeten ze van 1-x eerst nog x-1 maken door middel van het buitenhaakjes halen van -1. Dat ziet er raar uit, maar 't klopt wel:

$1-x=-1(-1+x)=-(x-1)$

Daarna kan je dan de term $x-1$ wegdelen.

Helpt dat?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 7 september 2018



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3