De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Drie verdelingen gebruiken

 Dit is een reactie op vraag 86032 
Natuurlijk ken ik de binomiale verdeling. Vond slechts de omgedraaide manier van werken verwarrend en dacht dat hiervoor een snellere manier was dan een n invullen en kijken dus ik dacht ik check het even hier. Inmiddels was ik ook al aan de eerste twee gekomen maar de normale verdeling lukte nog niet. Ik heb nu P[X$>$=1] = 1 - P[X$<$1] = 1 - P[X$<$=0] = 1 - φ((-0.05n)/sqrt(0.050.95n)) $>$= 0.99 dus φ((-0.05n)/sqrt(0.050.95n)) $<$= 0.01 geeft (-0.05n)/sqrt(0.050.95n) $<$= inv(φ)(0.01) maar dit is niet mogelijk. Wat doe ik fout, is dit te ingewikkeld of juist niet?

Walter
Student universiteit - woensdag 4 april 2018

Antwoord

Tsja, het enige was dat de `succeskans' nu eigenlijk de faalkans is, $0.05$ dus.
Bij je normale benadering lijkt het of de haakjes ontbreken; de variantie is $n\cdot0.05\cdot(1-0.05)=n\cdot0.05\cdot0.95$, bij jou leek er iets anders te staan.
Maar in je latere reactie zag het er goed uit.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 5 april 2018



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3