De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Recurrent betrekkingen, expliciete voorschriften en genererende functies

Hallo,

Ik heb nog 2 vaagjes in verband met het omschrijven van een recurrent betrekking tot een expliciet voorschrift met een genererende functie.

1) Ik moet de genererende functie G(x) = (6x+2)/((x+1)2) omschrijven tot een expliciet voorschrift. Ik begrijp echter de volgende stap niet waarbij men in de stappen van x overgaat tot de stap met n en n+1. Ik heb het in de afbeelding omcirkeld.

2) Wat is het expliciet voorschrift dat komt uit de genererende functie G(x) = (2x3+4x2)/(1-9x2)? Ik loop voortdurend vast :-/

Groetjes

Lau
Leerling bovenbouw havo-vwo - donderdag 20 oktober 2016

Antwoord

q83069img2.gif

We hebben gezien dat
$$
\frac1{(1+x)^2}=\sum_{n=0}^\infty(-1)^n(n+1)x^n
$$dus
$$
\frac 1{(1+x)^2}=x\sum_{n=0}^\infty(-1)^n(n+1)x^n = \sum_{n=0}^\infty(-1)^n(n+1)x^{n+1}
$$en dat laatste kunnen we ook schrijven als
$$
\sum_{n=1}^\infty (-1)^{n-1}nx^n
$$(schijft alle indices eentje op) en ook als
$$
\sum_{n=0}^\infty (-1)^{n-1}nx^n
$$(want de term bij $n=0$ is toch nul).
Dit betekent wel dat er een foutje in je plaatje staat.
We hebben
$$
6\sum_{n=0}^\infty(-1)^{n-1}nx^n + 2\sum_{n=0}^\infty (-1)^n(n+1)x^n
$$Als we het onder een somteken brengen komt er dus
$$
\sum_{n=0}^\infty \bigl(6(-1)^{n-1}n + 2(-1)^n(n+1)\bigr)x^n
$$en het geheel tussen de haken wordt dan $(-1)^{n-1}(6n-2(n+1))$ ofwel $(-1)^{n-1}(4n-2)$; dit klopt met het antwoord in het plaatje, maar niet met de voorlaatste stap, daar moet $(-1)^{n+1}$ tussen de $6$ en de $n$ staan.

De tweede som gaat op een dergelijke manier:
$$
\frac1{1-9x^2} = \sum_{n=0}^\infty (9x^2)^n = \sum_{n=0}^\infty 9^nx^{2n}
$$(meetkundige reeks).
Nu met $2x^3$ en $4x^2$ vermenigvuldigen; je krijgt dan twee reeksen, respectievelijk met alleen oneven en alleen even machten.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 22 oktober 2016



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3