De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Gelijkbenigheid driehoek

Gegeven: sin a - sin b = cos a - cos b
te bewijzen: de driehoek (met hoeken a,b,c) is gelijkbenig

Hoe begin ik hieraan?

T
3de graad ASO - vrijdag 17 juni 2016

Antwoord

Een mogelijkheid is gonioformules gebruiken:
$$
\sin a-\sin b=2\cos\left(\frac{a+b}2\right)\sin\left(\frac{a-b}2\right)
$$en
$$
\cos a-\cos b=-2\sin\left(\frac{a+b}2\right)\sin\left(\frac{a-b}2\right)
$$dan kun je de gegeven vergelijking wat anders opschrijven en wellicht concluderen dat $a=b$ (NB $a$ en $b$ liggen allebei in het interval $(0,\frac12\pi)$).

Alternatief: maak $\sin a-\cos a=\sin b-\cos b$ van je vergelijking; die kun je ook schrijven als
$$
\sqrt2\sin\left(a-\frac14\pi\right)=\sqrt2\sin\left(b-\frac14\pi\right)
$$

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 19 juni 2016



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3